EE 330 Lecture 7

- Propagation Delay
- Stick Diagrams
- Technology Files
- Design Rules

Review from Last Time

MOS Transistor
 Qualitative Discussion of n-channel Operation

For \mathbf{V}_{GS} small
n-channel MOSFET

MOSFET actually 4-terminal device
n-channel MOSFET
For V_{GS} large

- Region under gate termed the "channel"
- When "resistor" is electrically created, region where it resides in channel is termed an "inversion region"

Review from Last Time

MOS Transistor
 Qualitative Discussion of n-channel Operation

For $\mathbf{V}_{\mathbf{G S}}$ small

For $\mathbf{V}_{\mathbf{G S}}$ large

- Electrically created inversion layer forms a "thin "film" resistor
- Capacitance from gate to channel region is distributed
- Lumped capacitance much easier to work with

Review from Last Time

MOS Transistor

Qualitative Discussion of p-channel Operation

p-channel MOSFET
For $\left|\mathbf{V}_{\mathbf{G s}}\right|$ small

Source

For | V_{GS} large

- Electrically created inversion layer forms a "thin "film" resistor
- Capacitance from gate to channel region is distributed
- Lumped capacitance much easier to work with

Review from Last Time
 Improved Switch-Level Model

$C_{G S}$ and $R_{S W}$ dependent upon device sizes and process
For minimum-sized devices in a $0.5 u$ process with $V_{D D}=5 \mathrm{~V}$

$$
\left.\mathrm{C}_{\mathrm{Gs}} \cong 1.5 \mathrm{fF} \quad \mathrm{R}_{\mathrm{sw}} \cong \begin{array}{l}
2 \mathrm{~K} \Omega \mathrm{n} \text {-channel } \\
6 \mathrm{~K} \Omega \mathrm{p} \text {-channel }
\end{array}\right\}
$$

Considerable emphasis will be placed upon device sizing to manage $C_{G S}$ and $R_{S W}$

Review from Last Time
Is a capacitor of 1.5 fF small enough to be neglected?

From EE 201 Parts Kit

Capacitors (Farads)			
100 p	3		
470 p	3	2	-
0.001 u	3	2	-
0.0047 u	3		-
0.01 u	3	1	-
0.047 u	3		
0.1 u	3		
0.47 u	3		
1 u	3		
10 u	3		
100 u	3		

Area allocations shown to relative scale:

Review from Last Time

Is a capacitor of 1.5 ff small enough to be neglected?

Area allocations shown to relative scale:

- Not enough information at this point to determine whether this very small capacitance can be neglected
- Will answer this important question later

1. Switch-Level model

Source
2. Improved switch-level model

Switch closed for $V_{G S}=$ large Switch open for $V_{G S}=$ small

Other models will be developed later

Review from Last Time

Model Summary (for p-channel)

1. Switch-Level model

2. Improved switch-level model

Switch closed for $\left|V_{G S}\right|=$ large Switch open for $\left|V_{G s}\right|=$ small

Other models will be developed later

Propagation Delay

Example

What are $t_{H L}$ and $t_{L H}$?

Assume $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

With improved switch level model?

Example

Inverter

Inverter with basic switch-level model

Example What are $t_{H L}$ and $t_{L H}$ at output?

Assume ideal step at A input

With basic switch level model

Example (cont)
With simple switch-level model $\quad t_{H L}=t_{L H}=0$

With improved model ?
Inverter Model?

Example (cont)

Inverter with improved model

Inverter with Improved Model

Inverter Model

Example (cont)

With improved model $\boldsymbol{t}_{H L}=$?

To initiate a HL output transisition, assume Y has been in the high state for a long time and lower switch closes at time $t=0$

5 V is the initial condition on C_{L}

Example (cont)

With improved model
$t_{H L}=?$

Recognize circuit (specifically on right) as a first-order RC network

Recall: Step response of any first-order network with LHP pole can be written as

$$
y(t)=F+(I-F) e^{-\frac{t}{\tau}}
$$

where F is the final value, I is the initial value and τ is the time constant of the circuit
(from Chapter 7 of Nilsson and Riedel)

For the circuit above, $F=0, I=5$ and $\tau=R_{s w_{n}} C_{L}$

Example (cont)

With improved model

$t_{H L}=?$

$$
V_{\text {out }}(\mathrm{t})=\mathrm{F}+(\mathrm{I}-\mathrm{F}) \mathrm{e}^{\frac{-1}{\mathrm{t}}}
$$

$$
V_{\text {out }}(t)=5 e^{\frac{t}{t}}
$$

$$
\tau=\mathrm{R}_{\mathrm{sw}} \mathrm{C}_{\llcorner }
$$

$$
t_{H L}=\text { ? }
$$

how is $t_{H L}$ defined?

Example (cont)

$t_{H L}=$?

$$
\begin{aligned}
& I=5 \mathrm{~V}, \quad F=0 \mathrm{~V} \\
& \tau=\mathrm{R}_{\mathrm{s} W_{\mathrm{n}}} \mathrm{C}_{\mathrm{L}}
\end{aligned}
$$

Define $t_{t u t}$ to be the time taken for output to drop to I/e
$\mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{F}+(I-\mathrm{F}) \mathrm{e}^{\frac{-1}{\tau}} \Longrightarrow \frac{I}{\mathrm{e}}=\mathrm{F}+(I-\mathrm{F}) \mathrm{e}^{-\frac{\text { tut }}{t}}$
Is this simply a mathematical definition or does it have some practical significance?
$t_{H L}$ as defined here and as verified by experimental verification has proven useful at analytically predicting response time of circuits

Example (cont)

With improved model

$$
\frac{I}{\mathrm{e}}=I \mathrm{e}^{-\frac{\mathrm{tru}}{\tau}}
$$

$\frac{1}{\mathrm{e}}=\mathrm{e}^{\frac{-t_{t+2}^{\tau}}{\tau}}$
$t_{H L}=\tau$

$$
t_{H L}=\mathrm{R}_{\mathrm{swn}} \mathrm{C}_{\mathrm{L}}
$$

Both experimental results and accurate computer simulations show that this reasonably accurately predicts how quickly following stages recognize that a logic transition has taken place !!

Example (cont)

With improved model $t_{L H}=$?

Assume output in low state for a long time and upper switch closes at time $\mathbf{t}=\mathbf{0}$

OV is the initial condition on C_{L}

Example (cont)

With improved model $\boldsymbol{t}_{L H}=?$

$$
\mathrm{y}(\mathrm{t})=\mathrm{F}+(I-\mathrm{F}) \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}
$$

For this circuit (specifically on the right), $F=5, I=0$ and $\tau=R_{s w_{p}} C_{\llcorner }$

Example (cont)

With improved model

$t_{L H}=?$

$$
\begin{aligned}
& \mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{F}+(I-\mathrm{F}) \mathrm{e}^{-\frac{t}{\tau}} \\
& \mathrm{~V}_{\text {out }}(\mathrm{t})=5\left(1-\mathrm{e}^{-\frac{t}{\tau}}\right) \\
& \tau=\mathrm{R}_{\text {swp }} \mathrm{C}_{\mathrm{L}}
\end{aligned}
$$

how is $t_{\text {LH }}$ defined?

Example (cont)

With improved model

Define $t_{\text {LH }}$ as shown on
 figure

$t_{\text {LH }}$ as defined has proven useful for analytically predicting response time of circuits

$$
\mathrm{V}_{\text {out }}(\mathrm{t})=\mathrm{F}+(I-\mathrm{F}) \mathrm{e}^{\frac{\mathrm{t}}{t}} \Longleftrightarrow \mathrm{~F}\left(1-\frac{1}{\mathrm{e}}\right)=\mathrm{F}+(I-\mathrm{F}) \mathrm{e}^{-\frac{t_{H}}{t}}
$$

Example (cont)

With improved model

$$
\begin{aligned}
& t_{L H}=?
\end{aligned}
$$

$$
\begin{aligned}
& F\left(1-\frac{1}{e}\right)=F+(F) e^{\frac{-t .}{m}} \\
& 1-\frac{1}{e}=1+e^{\frac{\text { tum }}{\text { m }}} \\
& \mathrm{t}_{\mathrm{H}}=\tau
\end{aligned}
$$

Example (cont)

With improved model

In the ON 0.5 process with minimum-sized devices

$$
\begin{aligned}
& \mathrm{t}_{\text {HL }} \cong \mathrm{R}_{\mathrm{sW} \mathrm{~N}_{2}} \mathrm{C}_{\mathrm{L}}=2 K \bullet 1 p F \mathrm{sec} \\
& \mathrm{t}_{\mathrm{LH}} \cong \mathrm{R}_{\mathrm{sw}}^{\mathrm{P}} \\
& \mathrm{C}_{\mathrm{L}}=6 K \bullet 1 p F=6 n \mathrm{sec}
\end{aligned}
$$

Note this circuit is quite fast!
Note that $t_{H L}$ is much shorter than $t_{L H}$
Often C_{L} will be even smaller and the circuit will be much faster !!

Summary: What is the delay of a minimum-sized inverter driving a 1 pF load?

> In the $\mathrm{ON} 0.5 \mu$ process
> $t_{\text {HL }} \cong R_{\text {swn }} C_{L}$
> $=2 K \bullet 1 p F=2 n \mathrm{sec}$
> $t_{\mathrm{LH}} \cong \mathrm{R}_{\mathrm{sw}} \mathrm{C}_{\mathrm{L}}$
> $=6 K \bullet 1 p F=6 n \mathrm{sec}$

Improved switch-level model

Switch closed for $\mathrm{V}_{\mathrm{GS}}=$ large
Switch open for $\mathrm{V}_{\mathrm{GS}}=$ small

- Previous example showed why R_{SW} in the model was important
- But of what use is the C_{GS} which did not enter the previous calculations?

For minimum-sized devices in a 0.5μ process

$$
\left.C_{G S} \cong 1.5 \mathrm{fF} \quad R_{\mathrm{sw}} \cong \begin{array}{c}
2 \mathrm{~K} \Omega \mathrm{n}-\text { channel } \\
6 \mathrm{~K} \Omega \mathrm{p}-\text { channel }
\end{array}\right\}
$$

One gate often drives one or more other gates!

What are $t_{H L}$ and $t_{L H}$?

Example: What is the delay of a minimum-sized inverter driving another identical device?

Loading effects same whether $C_{G S p}$ and/or $C_{G S n}$ connected to $V_{D D}$ or GND

For convenience, will reference both to ground

Is a capacitor of 1.5 fF small enough to be neglected?

Area allocations shown to relative scale:

- This example will provide insight into the answer of the question

Example: What is the delay of a minimum-sized inverter driving another identical device? Assume $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

Generalizing the Previous Analysis to Arbitrary Load

$$
\begin{aligned}
t_{\mathrm{HL}} \cong R_{\text {swn }} C_{L} \\
t_{\mathrm{LH}} \cong R_{\text {swp }} C_{L}
\end{aligned}
$$

Example: What is the delay of a minimum-sized inverter driving another identical device?

Do gates really operate this fast?
What would be the maximum clock rate for acceptable operation?

Example: What is the delay of a minimum-sized inverter driving another identical device?

$$
\begin{aligned}
& \mathrm{t}_{\text {HL }} \cong \mathrm{R}_{\mathrm{sw} \mathrm{n}} \mathrm{C}_{\mathrm{L}}=6 p \mathrm{sec} \\
& \mathrm{t}_{\mathrm{LH}} \cong \mathrm{R}_{\mathrm{s} \mathrm{sW}_{\mathrm{p}}} \mathrm{C}_{\mathrm{L}}=18 p \mathrm{sec}
\end{aligned}
$$

What would be the maximum clock rate for acceptable operation?

$$
\begin{gathered}
\mathrm{T}_{\mathrm{CLK} \text {-min }}=\mathrm{t}_{\mathrm{HLL}}+\mathrm{t}_{\text {LH }} \\
\mathrm{f}_{\mathrm{CLK}-\max }=\frac{1}{\mathrm{~T}_{\mathrm{CLK}-\min }}=\frac{1}{24 \mathrm{psec}}=40 \mathrm{GHz}
\end{gathered}
$$

And much faster in a finer feature process !!
What would be the implications of allowing for 10 levels of logic and 10 loads (FanOut=10)?

Example: What is the delay of a minimum-sized inverter driving another identical device? SUMMARY

$$
\mathrm{t}_{\mathrm{HL}} \cong \mathrm{R}_{\mathrm{swn}} \mathrm{C}_{\mathrm{L}} \quad=2 K \bullet 3 f F=6 p \mathrm{sec}
$$

$$
\mathrm{t}_{\mathrm{tH}} \cong \mathrm{R}_{\mathrm{sw} \mathrm{~N}_{P}} \mathrm{C}_{2}
$$

$$
=6 K \bullet 3 f F=18 p \mathrm{sec}
$$

This is very fast but even the small 1.5fF capacitors are not negligible!
These capacitors play a key role in determining the speed of a circuit !

Response time of logic gates

- Logic Circuits can operate very fast
- Extremely small parasitic capacitances play key role in speed of a circuit

Some Observations about Technology and Politics

Are the larger feature size technologies still used by industry today in the US or abroad?

GlobalData predicts that the Chinese market will play a much smaller role for foreign suppliers by 2030. More than 90% of the chips sold and used worldwide involve lowprocess production technology.
https://www.investmentmonitor.ai/analysis/china-lead-global-semiconductor-growth 2030\#:~:text=Global \%20semiconductor\%20industry\%20revolves\%20around,Samsung 20Electronics\%20and\%20SK\%20Hynix.

Some Observations about Technology and Politics

Sept 2022
https://technode.com/2021/03/04/where-china-is-investing-in-semiconductors-in-charts/

China is the world's largest consumer of semiconductors, and the lion's share of revenue from purchasing these chips go to foreign firms. China consumed \$143.4 billion worth of wafers in 2020, and just 5.9% of them were produced by companies headquartered in China.

The Chips Act of 2022

\$52 billion grant over five years to help grow the domestic semiconductor manufacturing. $\$ 2$ billion of which is to explicitly focus on legacy chip production. These chips are essential to the auto industry, the military, and other industries critical to our national security interests.

```
\square
```

The CHIPS and Science Act of 2022 directs $\$ 280$ billion in spending over the next ten years, with the bulk for scientific R\&D.

CHIPS and Science Act funding for 2022-26, \$ billion
. .fific R8D and comerializat Some $\$ 52.7$ billion is for semiconductor manufacturing, R\&D, and workforce development, with another $\$ 24$ billion worth of tax credits for chip production. There is $\$ 3$ billion slated for programs aimed at leading-edge technology and wireless supply chains.
By the numbers: The CHIPS Act directs $\$ 280$ billion in spending over the next ten years. The majority- $\$ 200$ billion-is for scientific R\&D and commercialization. manufacturing, R\&D, and workforce

Total 278.2

Source: Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act of 2022, H.R. 4346, 117th Cong. (2022)

McKinsey
\& Company

How do I get CHIPS Act Funding?

Breaking News: The application for wafer manufacturers and suppliers of materials and equipment (e.g., chemicals and tools) was just released. Read the details here.
$\$ 53$ billion is available for semiconductor manufacturing and R\&D, plus a 25% refundable tax credit for qualified CapEx. See below to discover where your business fits in

Need help? Book an appointment with our professional grant writing team here or email us: equity@chipsact.com

Stay Safe and Stay Healthy !

End of Lecture 7

